-
x = ln( √2 + 1 );
e^x = e^[ ln( √2 + 1 ) ] = √2 + 1;
e^(-x) = 1/e^x = 1/( √2 + 1 ) = ( √2 - 1 )/[ ( √2 + 1 )( √2 - 1 ) ] = √2 - 1;
tanh[ ln( √2 + 1 ) ] = tanhx
= [ e^x - e^(-x) ]/[ e^x + e^(-x) ]
= [ √2 + 1 - ( √2 - 1 ) ]/[ √2 + 1 + ( √2 - 1 ) ]
= [ 2 ]/[ 2√2 ]
= √2/2 。
-
thx=(e^x-1/e^x)/(e^x+1/e^x)
x=ln(√2+1)
e^x=√2+1=1/(√2-1)
thx=[(√2+1)-(√2-1)]/[(√2+1)+(√2-1)=2/(2√2)=1/√2
或者thx=0.5√2
如本站内容“对您有用”,欢迎随意打赏,让我们持续更新!
打赏